155 users had unlocked the prompt

Chart Generator

Create stunning charts effortlessly! Transform your data into visual insights with our intuitive chart generator. Try it now!

DesignWritingCoding
Sign in to try online

Prompt

🔒 Log in to see the prompt →
Help me to write the logic in the following program in into mermaid.live input to generate sequenceDiagram: { code: import numpy as np import tensorflow as tf from tensorflow.keras import layers import gym # Hyperparameters GAMMA = 0.99 TAU = 0.005 BATCH_SIZE = 64 BUFFER_SIZE = 1000000 ACTOR_LR = 0.001 CRITIC_LR = 0.002 class ReplayBuffer: def __init__(self, buffer_size): self.buffer_size = buffer_size self.buffer = [] self.position = 0 def add(self, state, action, reward, next_state, done): transition = (state, action, reward, next_state, done) if len(self.buffer) < self.buffer_size: self.buffer.append(transition) else: self.buffer[self.position] = transition self.position = (self.position + 1) % self.buffer_size def sample(self, batch_size): indices = np.random.choice(len(self.buffer), size=batch_size) return [self.buffer[i] for i in indices] def __len__(self): return len(self.buffer) class DDPG: def __init__(self, state_dim, action_dim, max_action): self.actor = self.create_actor(state_dim, action_dim, max_action) self.actor_target = self.create_actor(state_dim, action_dim, max_action) self.actor_target.set_weights(self.actor.get_weights()) self.critic = self.create_critic(state_dim, action_dim) self.critic_target = self.create_critic(state_dim, action_dim) self.critic_target.set_weights(self.critic.get_weights()) self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=ACTOR_LR) self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=CRITIC_LR) def create_actor(self, state_dim, action_dim, max_action): inputs = layers.Input(shape=(state_dim,)) x = layers.Dense(400, activation='relu')(inputs) x = layers.Dense(300, activation='relu')(x) x = layers.Dense(action_dim, activation='tanh')(x) outputs = max_action * x return tf.keras.Model(inputs=inputs, outputs=outputs) def create_critic(self, state_dim, action_dim): state_inputs = layers.Input(shape=(state_dim,)) action_inputs = layers.Input(shape=(action_dim,)) x = layers.Concatenate()([state_inputs, action_inputs]) x = layers.Dense(400, activation='relu')(x) x = layers.Dense(300, activation='relu')(x) outputs = layers.Dense(1)(x) return tf.keras.Model(inputs=[state_inputs, action_inputs], outputs=outputs) def train(self, replay_buffer): sample = replay_buffer.sample(BATCH_SIZE) state, action, reward, next_state, done = list(map(np.array, zip(*sample))) with tf.GradientTape() as tape: target_actions = self.actor_target(next_state) target_q_values = self.critic_target([next_state, target_actions]) target_values = reward + GAMMA * target_q_values * (1 - done) q_values = self.critic([state, action]) critic_loss = tf.reduce_mean((q_values - target_values) ** 2) critic_grads = tape.gradient(critic_loss, self.critic.trainable_variables) self.critic_optimizer.apply_gradients(zip(critic_grads, self.critic.trainable_variables)) with tf.GradientTape() as tape: actions = self.actor(state) actor_loss = -tf.reduce_mean(self.critic([state, actions])) actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables) self.actor_optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables)) # Update target networks self.update_target_networks() def update_target_networks(self): actor_weights = self.actor.get_weights() actor_target_weights = self.actor_target.get_weights() critic_weights = self.critic.get_weights() critic_target_weights = self.critic_target.get_weights() for i in range(len(actor_weights)): actor_target_weights[i] = TAU * actor_weights[i] + (1 - TAU) * actor_target_weights[i] for i in range(len(critic_weights)): critic_target_weights[i] = TAU * critic_weights[i] + (1 - TAU) * critic_target_weights[i] self.actor_target.set_weights(actor_target_weights) self.critic_target.set_weights(critic_target_weights) def select_action(self, state): state = np.expand_dims(state, axis=0) return self.actor(state).numpy().flatten() agent = DDPG(state_dim, action_dim, max_action) replay_buffer = ReplayBuffer(BUFFER_SIZE) episode_rewards = [] for episode in range(1, 101): state = env.reset() episode_reward = 0 for t in range(1, 201): action = agent.select_action(state) next_state, reward, done, _ = env.step(action) replay_buffer.add(state, action, reward, next_state, done) if len(replay_buffer) >= BATCH_SIZE: agent.train(replay_buffer) state = next_state episode_reward += reward if done: break }
Add to Prompt Library

Discover More Prompts

arvin

How to Use Prompt?

1

Find the target prompt

Enter keywords or browse the prompt list to find the prompt related to your needs.

arvin
2

View prompt details

After registering or logging in (it's free!), view the prompt details, including prompt content, and results.

arvin
3

Generate by AI models

Click Try and you will reach the Arvin Interface, enter the parameters and generate the desired results.

arvin